Identification of GPI anchor attachment signals by a Kohonen self-organizing map
نویسندگان
چکیده
MOTIVATION Anchoring of proteins to the extracytosolic leaflet of membranes via C-terminal attachment of glycosylphosphatidylinositol (GPI) is ubiquitous and essential in eukaryotes. The signal for GPI-anchoring is confined to the C-terminus of the target protein. In order to identify anchoring signals in silico, we have trained neural networks on known GPI-anchored proteins, systematically optimizing input parameters. RESULTS A Kohonen self-organizing map, GPI-SOM, was developed that predicts GPI-anchored proteins with high accuracy. In combination with SignalP, GPI-SOM was used in genome-wide surveys for GPI-anchored proteins in diverse eukaryotes. Apart from specialized parasites, a general trend towards higher percentages of GPI-anchored proteins in larger proteomes was observed. AVAILABILITY GPI-SOM is accessible on-line at http://gpi.unibe.ch. The source code (written in C) is available on the same website. SUPPLEMENTARY INFORMATION Positive training set, performance test sets and lists of predicted GPI-anchored proteins from different eukaryotes in fasta format.
منابع مشابه
Kohonen Self Organizing for Automatic Identification of Cartographic Objects
Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution s...
متن کاملLandforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGlycosyl-phosphatidylinositol anchor attachment in a yeast in vitro system.
The yeast mating pheromone precursor prepro-alpha factor was fused to C-terminal signals for glycosyl-phosphatidylinositol (GPI) anchor attachment, based on the sequence of the Saccharomyces cerevisiae protein Gas1p. Maturation of fusion proteins expressed in vivo required the presence of both a functional GPI attachment site and the synthesis of GPI precursors. Constructs were translated in vi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 21 9 شماره
صفحات -
تاریخ انتشار 2005